Computing connections on modules
نویسندگان
چکیده
We consider the notion of a connection on a module over a commutative ring, and deduce an obstruction calculus for determining if there exist such connections. The obstruction calculus is defined using Hochschild cohomology. However, in order to compute with Gröbner bases, we need the non-trivial conversion to a description using free resolutions. We describe our implementation in Singular 3.0, available as the library conn.lib. Finally, we use the library to verify some known results and to obtain a new theorem for maximal Cohen-Macaulay (MCM) modules on isolated singularities. For a simple hypersurface singularity in dimension one and two, all MCM modules admit connections. Based on experiments, we conjecture that only the free MCM modules admit connections in dimension three.
منابع مشابه
Computing obstructions for existence of connections on modules
We consider the notion of a connection on a module over a commutative ring, and recall the obstruction calculus for such connections. This obstruction calculus is defined using Hochschild cohomology. However, in order to compute with Gröbner bases, we need the conversion to a description using free resolutions. We describe our implementation in Singular 3.0, available as the library conn.lib. F...
متن کاملA New Model Representation for Road Mapping in Emerging Sciences: A Case Study on Roadmap of Quantum Computing
One of the solutions for organizations to succeed in highly competitive markets is to move toward emerging sciences. These areas provide many opportunities, but, if organizations do not meet requirements of emerging sciences, they may fail and eventually, may enter a crisis. In this matter, one of the important requirements is to develop suitable roadmaps in variety fields such as strategic, ca...
متن کاملGeneralized Local Homology Modules of Complexes
The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...
متن کاملImprecise Minority-Based Full Adder for Approximate Computing Using CNFETs
Nowadays, the portable multimedia electronic devices, which employ signal-processing modules, require power aware structures more than ever. For the applications associating with human senses, approximate arithmetic circuits can be considered to improve performance and power efficiency. On the other hand, scaling has led to some limitations in performance of nanoscale circuits. According...
متن کاملCommutative Algebra
Introduction 5 0.1. What is Commutative Algebra? 5 0.2. Why study Commutative Algebra? 5 0.3. Acknowledgments 7 1. Commutative rings 7 1.1. Fixing terminology 7 1.2. Adjoining elements 10 1.3. Ideals and quotient rings 11 1.4. The monoid of ideals of R 14 1.5. Pushing and pulling ideals 15 1.6. Maximal and prime ideals 16 1.7. Products of rings 17 1.8. A cheatsheet 19 2. Galois Connections 20 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006